Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Psychol Med ; : 1-9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634486

RESUMO

BACKGROUND: Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS: In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS: We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS: The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.

2.
Nat Commun ; 15(1): 2355, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491089

RESUMO

Handedness develops early in life, but the structural and functional brain connectivity patterns associated with it remains unknown. Here we investigate associations between handedness and the asymmetry of brain connectivity in 9- to 10-years old children from the Adolescent Brain Cognitive Development (ABCD) study. Compared to right-handers, left-handers had increased global functional connectivity density in the left-hand motor area and decreased it in the right-hand motor area. A connectivity-based index of handedness provided a sharper differentiation between right- and left-handers. The laterality of hand-motor connectivity varied as a function of handedness in unimodal sensorimotor cortices, heteromodal areas, and cerebellum (P < 0.001) and reproduced across all regions of interest in Discovery and Replication subsamples. Here we show a strong association between handedness and the laterality of the functional connectivity patterns in the absence of differences in structural connectivity, brain morphometrics, and cortical myelin between left, right, and mixed handed children.


Assuntos
Lateralidade Funcional , Córtex Sensório-Motor , Adolescente , Criança , Humanos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cerebelo
3.
Neuropsychopharmacology ; 49(6): 924-932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326458

RESUMO

The rewarding effects of stimulant drugs such as methylphenidate (MP) depend crucially on how fast they raise dopamine in the brain. Yet how the rate of drug-induced dopamine increases impacts brain network communication remains unresolved. We manipulated route of MP administration to generate fast versus slow dopamine increases. We hypothesized that fast versus slow dopamine increases would result in a differential pattern of global brain connectivity (GBC) in association with regional levels of dopamine D1 receptors, which are critical for drug reward. Twenty healthy adults received MP intravenously (0.5 mg/kg; fast dopamine increases) and orally (60 mg; slow dopamine increases) during simultaneous [11C]raclopride PET-fMRI scans (double-blind, placebo-controlled). We tested how GBC was temporally associated with slow and fast dopamine increases on a minute-to-minute basis. Connectivity patterns were strikingly different for slow versus fast dopamine increases, and whole-brain spatial patterns were negatively correlated with one another (rho = -0.54, pspin < 0.001). GBC showed "fast>slow" associations in dorsal prefrontal cortex, insula, posterior thalamus and brainstem, caudate and precuneus; and "slow>fast" associations in ventral striatum, orbitofrontal cortex, and frontopolar cortex (pFDR < 0.05). "Fast>slow" GBC patterns showed significant spatial correspondence with D1 receptor availability (estimated via normative maps of [11C]SCH23390 binding; rho = 0.22, pspin < 0.05). Further, hippocampal GBC to fast dopamine increases was significantly negatively correlated with self-reported 'high' ratings to intravenous MP across individuals (r(19) = -0.68, pbonferroni = 0.015). Different routes of MP administration produce divergent patterns of brain connectivity. Fast dopamine increases are uniquely associated with connectivity patterns that have relevance for the subjective experience of drug reward.


Assuntos
Encéfalo , Dopamina , Imageamento por Ressonância Magnética , Metilfenidato , Tomografia por Emissão de Pósitrons , Racloprida , Humanos , Masculino , Adulto , Feminino , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dopamina/metabolismo , Metilfenidato/farmacologia , Metilfenidato/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Racloprida/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Receptores de Dopamina D1/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/diagnóstico por imagem , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/administração & dosagem , Mapeamento Encefálico
4.
Artigo em Inglês | MEDLINE | ID: mdl-38409281

RESUMO

Children with ADHD show abnormal brain function and structure. Neuroimaging studies found that stimulant medications may improve brain structural abnormalities in children with ADHD. However, prior studies on this topic were conducted with relatively small sample sizes and wide age ranges and showed inconsistent results. In this cross-sectional study, we employed latent class analysis and linear mixed-effects models to estimate the impact of stimulant medications using demographic, clinical measures, and brain structure in a large and diverse sample of children aged 9-11 from the Adolescent Brain and Cognitive Development Study. We studied 273 children with low ADHD symptoms and received stimulant medication (Stim Low-ADHD), 1002 children with high ADHD symptoms and received no medications (No-Med ADHD), and 5378 typically developing controls (TDC). After controlling for the covariates, compared to Stim Low-ADHD and TDC, No-Med ADHD showed lower cortical thickness in the right insula (INS, d = 0.340, PFDR = 0.003) and subcortical volume in the left nucleus accumbens (NAc, d = 0.371, PFDR = 0.003), indicating that high ADHD symptoms were associated with structural abnormalities in these brain regions. In addition, there was no difference in brain structural measures between Stim Low-ADHD and TDC children, suggesting that the stimulant effects improved both ADHD symptoms and ADHD-associated brain structural abnormalities. These findings together suggested that children with ADHD appear to have structural abnormalities in brain regions associated with saliency and reward processing, and treatment with stimulant medications not only improve the ADHD symptoms but also normalized these brain structural abnormalities.

5.
Psychol Med ; 54(2): 409-418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37365781

RESUMO

BACKGROUND: Preterm birth is a global health problem and associated with increased risk of long-term developmental impairments, but findings on the adverse outcomes of prematurity have been inconsistent. METHODS: Data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development (ABCD) Study. We identified 1706 preterm children and 1865 matched individuals as Control group and compared brain structure (MRI data), cognitive function and mental health symptoms. RESULTS: Results showed that preterm children had higher psychopathological risk and lower cognitive function scores compared to controls. Structural MRI analysis indicated that preterm children had higher cortical thickness in the medial orbitofrontal cortex, parahippocampal gyrus, temporal and occipital gyrus; smaller volumes in the temporal and parietal gyrus, cerebellum, insula and thalamus; and smaller fiber tract volumes in the fornix and parahippocampal-cingulum bundle. Partial correlation analyses showed that gestational age and birth weight were associated with ADHD symptoms, picvocab, flanker, reading, fluid cognition composite, crystallized cognition composite and total cognition composite scores, and measures of brain structure in regions involved with emotional regulation, attention and cognition. CONCLUSIONS: These findings suggest a complex interplay between psychopathological risk and cognitive deficits in preterm children that is associated with changes in regional brain volumes, cortical thickness, and structural connectivity among cortical and limbic brain regions critical for cognition and emotional well-being.


Assuntos
Nascimento Prematuro , Criança , Feminino , Adolescente , Recém-Nascido , Humanos , Encéfalo/patologia , Cognição/fisiologia , Recém-Nascido Prematuro , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos
6.
Proc Natl Acad Sci U S A ; 120(52): e2314596120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109535

RESUMO

The amplitude of low-frequency fluctuations (ALFF) and global functional connectivity density (gFCD) are fMRI (Functional MRI) metrics widely used to assess resting brain function. However, their differential sensitivity to stimulant-induced dopamine (DA) increases, including the rate of DA rise and the relationship between them, have not been investigated. Here we used, simultaneous PET-fMRI to examine the association between dynamic changes in striatal DA and brain activity as assessed by ALFF and gFCD, following placebo, intravenous (IV), or oral methylphenidate (MP) administration, using a within-subject double-blind placebo-controlled design. In putamen, MP significantly reduced D2/3 receptor availability and strongly reduced ALFF and increased gFCD in the brain for IV-MP (Cohen's d > 1.6) but less so for oral-MP (Cohen's d < 0.6). Enhanced gFCD was associated with both the level and the rate of striatal DA increases, whereas decreased ALFF was only associated with the level of DA increases. These findings suggest distinct representations of neurovascular activation with ALFF and gFCD by stimulant-induced DA increases with differential sensitivity to the rate and the level of DA increases. We also observed an inverse association between gFCD and ALFF that was markedly enhanced during IV-MP, which could reflect an increased contribution from MP's vasoactive properties.


Assuntos
Encéfalo , Dopamina , Metilfenidato , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Dopamina/farmacologia , Imageamento por Ressonância Magnética , Metilfenidato/farmacologia , Método Duplo-Cego
7.
Nat Commun ; 14(1): 6408, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938560

RESUMO

The faster a drug enters the brain, the greater its addictive potential, yet the brain circuits underlying the rate dependency to drug reward remain unresolved. With simultaneous PET-fMRI we linked dynamics of dopamine signaling, brain activity/connectivity, and self-reported 'high' in 20 adults receiving methylphenidate orally (results in slow delivery) and intravenously (results in fast delivery) (trial NCT03326245). We estimated speed of striatal dopamine increases to oral and IV methylphenidate and then tested where brain activity was associated with slow and fast dopamine dynamics (primary endpoint). We then tested whether these brain circuits were temporally associated with individual 'high' ratings to methylphenidate (secondary endpoint). A corticostriatal circuit comprising the dorsal anterior cingulate cortex and insula and their connections with dorsal caudate was activated by fast (but not slow) dopamine increases and paralleled 'high' ratings. These data provide evidence in humans for a link between dACC/insula activation and fast but not slow dopamine increases and document a critical role of the salience network in drug reward.


Assuntos
Comportamento Aditivo , Metilfenidato , Adulto , Humanos , Encéfalo/diagnóstico por imagem , Dopamina , Metilfenidato/farmacologia , Recompensa , Ensaios Clínicos como Assunto
8.
Artigo em Inglês | MEDLINE | ID: mdl-37935861

RESUMO

Substance use disorder (SUD) is a chronic relapsing disorder with long-lasting changes in brain intrinsic networks. While most research to date has focused on static functional connectivity, less is known about the effect of chronic drug use on dynamics of brain networks. Here we investigated brain state dynamics in individuals with opioid use (OUD) and alcohol use disorder (AUD) and assessed how concomitant nicotine use, which is frequent among individuals with OUD and AUD, affects brain dynamics. Resting-state functional magnetic resonance imaging data of 27 OUD, 107 AUD, and 137 healthy participants were included in the analyses. To identify recurrent brain states and their dynamics, we applied a data-driven clustering approach that determines brain states at a single time frame. We found that OUD and AUD non-smokers displayed similar changes in brain state dynamics including decreased fractional occupancy or dwell time in default mode network (DMN)-dominated brain states and increased appearance rate in visual network (VIS)-dominated brain states, which were also reflected in transition probabilities of related brain states. Interestingly, co-use of nicotine affected brain states in an opposite manner by lowering VIS-dominated and enhancing DMN-dominated brain states in both OUD and AUD participants. Our finding revealed a similar pattern of brain state dynamics in OUD and AUD participants that differed from controls, with an opposite effect for nicotine use suggesting distinct effects of various drugs on brain state dynamics. Different strategies for treating SUD may need to be implemented based on patterns of co-morbid drug use.

9.
Mol Psychiatry ; 28(10): 4195-4202, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37580525

RESUMO

Higher family income (FI) is associated with larger cortical gray matter volume and improved cognitive performance in children. However, little is known about the effects of FI on brain functional and structural connectivity. This cross-sectional study investigates the effects of FI on brain connectivity and cognitive performance in 9- to 11-years old children (n = 8739) from the Adolescent Brain Cognitive Development (ABCD) study. Lower FI was associated with decreased global functional connectivity density (gFCD) in the default-mode network (DMN), inferior and superior parietal cortices and in posterior cerebellum, and increased gFCD in motor, auditory, and extrastriate visual areas, and in subcortical regions both for girls and boys. Findings demonstrated high reproducibility in Discovery and Reproducibility samples. Cognitive performance partially mediated the association between FI and DMN connectivity, whereas DMN connectivity did not mediate the association between FI and cognitive performance. In contrast, there was no significant association between FI and structural connectivity. Findings suggest that poor cognitive performance, which likely reflects multiple factors (genetic, nutritional, the level and quality of parental interactions, and educational exposure [1]), contributes to reduced DMN functional connectivity in children from low-income families. Follow-up studies are needed to help clarify if this leads to reductions in structural connectivity as these children age.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Masculino , Feminino , Criança , Humanos , Adolescente , Estudos Transversais , Reprodutibilidade dos Testes , Cognição , Mapeamento Encefálico , Vias Neurais
10.
Prog Neurobiol ; 229: 102510, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516341

RESUMO

The relevance of interactions between autonomic and central nervous systems remains unclear for human brain function and health, particularly when both systems are challenged under sleep deprivation (SD). We measured brain activity (with fMRI), pulse and respiratory signals, and baseline brain amyloid beta burden (with PET) in healthy participants. We found that SD relative to rested wakefulness (RW) resulted in a significant increase in synchronized low frequency (LF, < 0.1 Hz) activity in an autonomically-related network (AN), including dorsal attention, visual, and sensorimotor regions, which we previously found to have consistent temporal coupling with LF pulse signal changes (regulated by sympathetic tone). SD resulted in a significant phase coherence between the LF component of the pulse signal and a medial network with peak effects in the midbrain reticular formation, and between LF component of the respiratory variations (regulated by respiratory motor output) and a cerebellar network. The LF power of AN during SD was significantly and independently correlated with pulse-medial network and respiratory-cerebellar network phase coherences (total adjusted R2 = 0.78). Higher LF power of AN during SD (but not RW) was associated with lower amyloid beta burden (Cohen's d = 0.8). In sum, SD triggered an autonomic mode of synchronized brain activity that was associated with distinct autonomic-central interactions. Findings highlight the direct relevance of global cortical synchronization to brain clearance mechanisms.


Assuntos
Peptídeos beta-Amiloides , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia , Frequência Cardíaca/fisiologia
11.
Obesity (Silver Spring) ; 31(6): 1634-1643, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37203333

RESUMO

OBJECTIVE: The goal of this study was to investigate laparoscopic sleeve gastrectomy (LSG)-induced changes in choice impulsivity and the neural correlates in individuals with obesity (OB). METHODS: The study employed functional magnetic resonance imaging with a delay discounting task in 29 OB tested before and 1 month after LSG. Thirty participants with normal weight matched to OB with gender and age were recruited as the control group and underwent an identical functional magnetic resonance imaging scan. Alterations in activation and functional connectivity between pre- and post-LSG were investigated and compared with participants with normal weight. RESULTS: OB exhibited significantly reduced discounting rate after LSG. During the delay discounting task, hyperactivation in dorsolateral prefrontal cortex, right caudate, and dorsomedial prefrontal cortex decreased in OB after LSG. LSG additionally engaged compensatory effects through increased activation in bilateral posterior insula and functional connectivity between caudate and dorsomedial prefrontal cortex. Those changes were associated with decreased discounting rate and BMI as well as improved eating behaviors. CONCLUSIONS: These findings indicate that decreased choice impulsivity following LSG was associated with the changes in regions involved in executive control, reward evaluation, interoception, and prospection. This study may provide neurophysiological support for the development of nonoperative treatments such as brain stimulation for individuals with obesity and overweight.


Assuntos
Desvalorização pelo Atraso , Laparoscopia , Humanos , Desvalorização pelo Atraso/fisiologia , Comportamento Impulsivo , Obesidade/cirurgia , Laparoscopia/métodos , Gastrectomia/métodos , Imageamento por Ressonância Magnética/métodos
12.
Front Neurosci ; 17: 1096232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113158

RESUMO

Introduction: The capacity to stay still during scanning, which is necessary to avoid motion confounds while imaging, varies markedly between people. Methods: Here we investigated the effect of head motion on functional connectivity using connectome-based predictive modeling (CPM) and publicly available brain functional magnetic resonance imaging (fMRI) data from 414 individuals with low frame-to-frame motion (Δd < 0.18 mm). Leave-one-out was used for internal cross-validation of head motion prediction in 207 participants, and twofold cross-validation was used in an independent sample (n = 207). Results and Discussion: Parametric testing, as well as CPM-based permutations for null hypothesis testing, revealed strong linear associations between observed and predicted values of head motion. Motion prediction accuracy was higher for task- than for rest-fMRI, and for absolute head motion (d) than for Δd. Denoising attenuated the predictability of head motion, but stricter framewise displacement threshold (FD = 0.2 mm) for motion censoring did not alter the accuracy of the predictions obtained with lenient censoring (FD = 0.5 mm). For rest-fMRI, prediction accuracy was lower for individuals with low motion (mean Δd < 0.02 mm; n = 200) than for those with moderate motion (Δd < 0.04 mm; n = 414). The cerebellum and default-mode network (DMN) regions that forecasted individual differences in d and Δd during six different tasks- and two rest-fMRI sessions were consistently prone to the deleterious effect of head motion. However, these findings generalized to a novel group of 1,422 individuals but not to simulated datasets without neurobiological contributions, suggesting that cerebellar and DMN connectivity could partially reflect functional signals pertaining to inhibitory motor control during fMRI.

13.
Commun Biol ; 6(1): 166, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765261

RESUMO

Dopamine facilitates cognition and is implicated in reward processing. Methylphenidate, a dopamine transporter blocker widely used to treat attention-deficit/hyperactivity disorder, can have rewarding and addictive effects if injected. Since methylphenidate's brain uptake is much faster after intravenous than oral intake, we hypothesize that the speed of dopamine increases in the striatum in addition to its amplitude underly drug reward. To test this we use simulations and PET data of [11C]raclopride's binding displacement with oral and intravenous methylphenidate challenges in 20 healthy controls. Simulations suggest that the time-varying difference in standardized uptake value ratios for [11C]raclopride between placebo and methylphenidate conditions is a proxy for the time-varying dopamine increases induced by methylphenidate. Here we show that the dopamine increase induced by intravenous methylphenidate (0.25 mg/kg) in the striatum is significantly faster than that by oral methylphenidate (60 mg), and its time-to-peak is strongly associated with the intensity of the self-report of "high". We show for the first time that the "high" is associated with the fast dopamine increases induced by methylphenidate.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Humanos , Metilfenidato/farmacologia , Dopamina/metabolismo , Racloprida/metabolismo , Racloprida/farmacologia , Racloprida/uso terapêutico , Encéfalo/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/uso terapêutico
14.
JAMA Netw Open ; 6(2): e230157, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809470

RESUMO

Importance: The neurobiological underpinnings underlying sex differences in cognition during adolescence are largely unknown. Objective: To examine sex differences in brain circuitry and their association with cognitive performance in US children. Design, Setting, and Participants: This cross-sectional study analyzed behavioral and imaging data from 9- to 11-year-old children from the Adolescent Brain Cognitive Development (ABCD) study between August 2017 and November 2018. The ABCD study is an open-science, multisite study following up more than 11 800 youths into early adulthood for 10 years with annual laboratory-based assessments and biennial magnetic resonance imaging (MRI). The selection of ABCD study children for the current analysis was based on the availability of functional and structural MRI data sets in ABCD Brain Imaging Data Structure Community Collection format. Five hundred and sixty participants who had excessive level of head motion (>50% of time points with framewise displacement >0.5 mm) during resting-state functional MRI were excluded from the analyses. Data were analyzed between January and August 2022. Main Outcomes and Measures: The main outcomes were the sex differences in (A) global functional connectivity density at rest and (B) mean water diffusivity (MD) and (C) the correlation of these metrics with total cognitive scores. Results: A total of 8961 children (4604 boys and 4357 girls; mean [SD] age, 9.92 [0.62] years) were included in this analysis. Girls had higher functional connectivity density in default mode network hubs than boys, predominantly in the posterior cingulate cortex (Cohen d = -0.36), and lower MD and transverse diffusivity, predominantly in the superior corticostriatal white matter bundle (Cohen d = 0.3). Age-corrected fluid and total composite scores were higher for girls than for boys (Cohen d = -0.08 [fluid] and -0.04 [total]; P = 2.7 × 10-5). Although total mean (SD) brain volume (1260 [104] mL in boys and 1160 [95] mL in girls; t = 50; Cohen d = 1.0; df = 8738) and the proportion of white matter (d = 0.4) were larger for boys than for girls, the proportion of gray matter was larger for girls than for boys (d = -0.3; P = 2.2 × 10-16). Conclusions and Relevance: The findings of this cross-sectional study on sex differences in brain connectivity and cognition are relevant to the future creation of brain developmental trajectory charts to monitor for deviations associated with impairments in cognition or behavior, including those due to psychiatric or neurological disorders. They could also serve as a framework for studies investigating the differential contribution of biological vs social or cultural factors in the neurodevelopmental trajectories of girls and boys.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Humanos , Masculino , Criança , Feminino , Adulto , Encéfalo/patologia , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Cognição
15.
Cereb Cortex ; 33(11): 6792-6802, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36653022

RESUMO

Eye-blinking has been implicated in arousal and attention. Here we test the hypothesis that blinking-moments represent arousal surges associated with activation of the ascending arousal network (AAN) and its thalamic projections. For this purpose, we explored the temporal relationship between eye-blinks and fMRI BOLD activity in AAN and thalamic nuclei, as well as whole brain cluster corrected activations during eyes-open, resting-state fMRI scanning. We show that BOLD activations in the AAN nuclei peaked prior to the eye blinks and in thalamic nuclei peaked prior to and during the blink, consistent with the role of eye blinking in arousal surges. Additionally, we showed visual cortex peak activation prior to the eye blinks, providing further evidence of the visual cortex's role in arousal, and document cerebellar peak activation post eye blinks, which might reflect downstream engagement from arousal surges.


Assuntos
Piscadela , Movimentos Oculares , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Nível de Alerta
16.
Cereb Cortex ; 33(5): 2037-2047, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35580853

RESUMO

Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.


Assuntos
Laparoscopia , Obesidade Mórbida , Humanos , Comportamento Alimentar/fisiologia , Obesidade Mórbida/psicologia , Obesidade Mórbida/cirurgia , Emoções , Gastrectomia , Redução de Peso/fisiologia , Resultado do Tratamento
17.
Cereb Cortex ; 33(7): 3674-3682, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989308

RESUMO

Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.


Assuntos
Substância Cinzenta , Obesidade Pediátrica , Adolescente , Humanos , Criança , Substância Cinzenta/diagnóstico por imagem , Estudos Longitudinais , Obesidade Pediátrica/diagnóstico por imagem , Córtex Cerebral , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
18.
Cereb Cortex ; 33(10): 6335-6344, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573454

RESUMO

To investigate the neural mechanisms underlying the association between poorer working memory performance and higher body mass index (BMI) in children. We employed structural-(sMRI) and functional magnetic resonance imaging (fMRI) with a 2-back working memory task to examine brain abnormalities and their associations with BMI and working memory performance in 232 children with overweight/obesity (OW/OB) and 244 normal weight children (NW) from the Adolescent Brain Cognitive Development dataset. OW/OB had lower working memory accuracy, which was associated with higher BMI. They showed smaller gray matter (GM) volumes in the left superior frontal gyrus (SFG_L), dorsal anterior cingulate cortex, medial orbital frontal cortex, and medial superior frontal gyrus, which were associated with lower working memory accuracy. During the working memory task, OW/OB relative to NW showed weaker activation in the left superior temporal pole, amygdala, insula, and bilateral caudate. In addition, caudate activation mediated the relationship between higher BMI and lower working memory accuracy. Higher BMI is associated with smaller GM volumes and weaker brain activation in regions involved with working memory. Task-related caudate dysfunction may account for lower working memory accuracy in children with higher BMI.


Assuntos
Substância Cinzenta , Memória de Curto Prazo , Adolescente , Humanos , Criança , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Memória de Curto Prazo/fisiologia , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Obesidade , Imageamento por Ressonância Magnética/métodos , Sobrepeso/patologia , Transtornos da Memória/patologia , Cognição
20.
Front Aging Neurosci ; 14: 1034355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438011

RESUMO

Insulin resistance and glucose dysregulation are associated with patterns of regional brain hypometabolism characteristic of Alzheimer's disease (AD). As predicted by evidence linking brain glucose metabolism to brain functional connectivity, type 2 diabetes is accompanied by altered functional connectivity density (FCD) in regions highly vulnerable to AD, but whether these alterations start at earlier stages such as pre-diabetes remain to be elucidated. Here, in addition to assessing whether pre-diabetes leads to a functional reorganization of densely connected cortical areas (hubs), we will assess whether such reorganization is conditioned by sex and/or insulin resistance, and contributes to improved cognition. One hundred and forty-four cognitively unimpaired middle-aged and older adults (55-78 years, 79 females), 73 with normoglycemia and 71 with pre-diabetes, underwent resting-state fMRI scanning. We first computed FCD mapping on cortical surfaces to determine the number of short- and long-range functional connections of every vertex in the cortex, and next used hubs showing aberrant FCD as seeds for the resting-state functional connectivity (rs-FC) calculation. ANCOVAs and linear multiple regression analyses adjusted by demographic and cardiometabolic confounders using frequentist and Bayesian approaches were applied. Analyses revealed higher long-range FCD in the right precuneus of pre-diabetic females and lower short-range FCD in the left medial orbitofrontal cortex (mOFC) of pre-diabetic individuals with higher insulin resistance. Although the mOFC also showed altered rs-FC patterns with other regions of the default mode network in pre-diabetic individuals, it was FCD of the precuneus and mOFC, and not the magnitude of their rs-FC, that was associated with better planning abilities and Mini-Mental State Examination (MMSE) scores. Results suggest that being female and/or having high insulin resistance exacerbate pre-diabetes-induced alterations in the FCD of hubs of the default-mode network that are particularly vulnerable to AD pathology. These changes in brain network organization appear to be compensatory for pre-diabetic females, likely assisting them to maintain cognitive functioning at early stages of glucose dysregulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...